Start a Career in High-Demand Data Analytics

With Data Analytics Course in Kochi

Expert Training

Learn from industry professionals with real-world experience in data analytics.

Comprehensive Curriculum

Gain in-depth knowledge of analytics tools, techniques, and best practices.

100% Placement Assistance

Secure your dream job with our robust placement support.

Hands-On Offline Classes

Experience interactive, in-person learning for a better understanding of concepts.

Empower Your Career with Data Analytics Skills

Are you aspiring to excel in the high-demand field of Data Analytics? STC Technologies’ Data Analytics Course in Kochi is your gateway to mastering one of the most essential skills of the digital era. Our comprehensive program is designed to equip you with a solid foundation in data analytics principles, tools, and techniques, helping you unlock exciting career opportunities in the IT sector.

We offer a top-notch Data Analytics course in Kochi with 100% placement assistance. Our offline classes provide an interactive and hands-on learning experience, ensuring you gain practical skills. Choosing the right Data Analytics training institute is your first step toward securing high-paying jobs in the IT industry.

Course Details

Duration– 3 Months Offline classroom

Syllabus

  • Introduction to Data Analytics  
  • What is Data Analytics? 
  •  Importance and applications of Data Analytics  
  • Types of Data Analytics (Descriptive, Diagnostic, Predictive, and Prescriptive)  
  • The data analytics lifecycle
  • Principles of Data Visualization  
  • Understanding Data and Insights  
  • Types of Data Visualizations and Their Use  
  • Tools for Data Visualization  
  • Excel, Power BI, Tableau for Visualization  
  • Design Best Practices  
  • Storytelling With Data  
  • Effective Dashboards and Reports  
  • Interactive Visualizations  
  • Embedding Visualizations into Websites  
  • Interactive Dashboards (PowerBI/Tableau)
  • Introduction to Python Programming  
  • Python Basics: Variables, Data Types, Operators  
  • Control Structures: Conditional Statements, Loops  
  • Data Structures and Functions  
  • Lists,Tuples, Dictionaries, Sets  
  • Functions and Lambda Expressions 
  • Libraries for Data Analytics  
  • NumPy for Numerical Computing  
  • Pandas for Data Manipulation  
  • Matplotlib and Seaborn for Visualization  
  • Working with Files  
  • Handling CSV, Excel Files  
  • Introduction to Data Analysis with Python  
  • Data Cleaning and Transformation  
  • Exploratory Data Analysis (EDA)  
  • Basic Machine Learning with Python  
  • Supervised vs Unsupervised Learning
  • Data Understanding  
  • Data Cleaning  
  • Descriptive Statistics  
  • Data Visualization  
  • Correlation Analysis  
  • Feature Engineering  
  • Outlier Detection  
  • Distribution Analysis  
  • Hypothesis Testing  Data Insights and Business Understanding
  • Data Collection Methods  
  • Surveys,Interviews,Observations  
  • Data Quality and Integrity  
  • EnsuringAccuracy, Completeness, and Consistency 
  •  Handling Missing Data  
  • Data Collection Tools
  • Data Exploration
  • Descriptive Statistics (mean, median, mode, standard deviation)  Data Distribution (histograms, box plots) 
  • Handling Missing Data
  • Imputation (mean, median, mode)  
  • Removal of Missing Data  
  • Forward and Backward Filling  
  • Handling Outliers
  • Identifying Outliers (IQR, Z-score method)  
  • Treating Outliers (removal, transformation) 
  • Data Transformation
  • Normalization and Standardization 
  • Log Transformation  
  • Scaling Techniques (Min-Max Scaling, Z-Score Scaling) 
  • Feature Engineering
  • Creating New Features from Existing Data  
  • Feature Encoding (One-Hot Encoding, Label Encoding)  Polynomial Features  
  • Data Integration
  • Merging Data from Multiple Sources  
  • Joining and Concatenation  Data Type Conversion
  • Converting Categorical to Numerical Data  
  • Handling Date and Time Variables 
  • Dealing with Duplicates 
  • Identifying and Removing Duplicates  
  • Data Quality Assessment
  • Ensuring Consistency, Completeness, and Accuracy
  • Linear Algebra  
  • Calculus  
  • Probability Theory  
  • Discrete Mathematics
  • Descriptive Statistics  
  • Probability Distributions  
  • Regression Analysis  Correlation and Covariance  
  • Statistical Modeling and Evaluation
  • K-Means Clustering  
  • Decision Trees  
  • Naive Bayes  
  • K-Nearest Neighbors (KNN) 
  • Support Vector Machines (SVM)  
  • Logistic Regression  
  • Random Forest  
  • Linear Regression 
  • Introduction to Machine Learning  
  • Types of Machine Learning  
  • Supervised Learning Algorithms  
  • LinearRegression, LogisticRegression  
  • Decision Trees, Random Forests  
  • K-Nearest Neighbors (k-NN), Support Vector Machines (SVM)  
  • Unsupervised Learning Algorithms  
  • Clustering:K-Means, Hierarchical Clustering  
  • Dimensionality Reduction: PCA  
  • Model Evaluation  
  • Cross-Validation, Bias-Variance Tradeoff  
  • Performance Metrics: Accuracy, Precision, Recall, F1 Score
  • Introduction to Databases  
  • SELECTQueries, WHERE Clause, Sorting Data  
  • Advanced SQLQueries  
  • Joins: INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN
  • Grouping and Aggregations: GROUP BY, HAVING  
  • Subqueries and NestedQueries  
  • Using Subqueries for Data Extraction  
  • SQL Functions and Operators  
  • String Functions, Date Functions, Mathematical Functions
  • Database Design and Normalization  
  • Understanding Keys: Primary, Foreign, Composite  
  • Normal Forms and Data Integrity  
  • SQL Performance Optimization  Indexing  
  • Query Optimization Techniques
  • Basic Formulas  
  • Advanced Formulas  
  • Pivot Tables
  • Introduction to PowerBI  
  • Overview and Setup  
  • Data Loading and Data Types  
  • Data Transformation with PowerQuery  
  • Importing Data from Multiple Sources  
  • Cleaning and Shaping Data  
  • CreatingRelationships  
  • Creating InteractiveReports and Dashboards  
  • Visualizations: Bar Charts, Line Graphs, Maps, etc.  
  • Slicers and Filters  
  • Drill-through Reports  
  • DAX (Data Analysis Expressions)  
  • Basic DAX Formulas  
  • Calculated Columns and Measures  
  • Time Intelligence in DAX  
  • Power BI Service  
  • Publishing Reports and Sharing Dashboards  
  • Collaborating and Sharing Insights  
  • Power BI for Business Insights  Creating KPI Dashboards  
  • Real-time Analytics 
  • Introduction to Tableau  
  • Installation and InterfaceOverview  
  • Connecting to Data Sources  
  • Data Preparation andTransformation  
  • Data Cleaning and Shaping in Tableau  
  • Handling Missing Data  
  • Building Basic Visualizations  
  • Types of Charts: Bar, Line, Pie, Scatter Plots, etc. 
  • Filters, Parameters, and Sets  
  • Dashboards in Tableau  
  • Creating Interactive Dashboards  
  • Actions and Navigation in Dashboards  
  • Sharing and Publishing Tableau Workbooks  
  • Tableau Public and Tableau Server/Online
  • Introduction to Deep Learning  
  • Overview of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL)  
  • Difference between Traditional Machine Learning and Deep Learning
  • Applications of Deep Learning (e.g., image recognition, natural language processing, autonomous driving)  
  • Neural Networks Fundamentals  Wht is a Neural Network?  
  • Structure of a Neural Network: Neurons, Layers (Input, Hidden, Output) 
  • Activation Functions (Sigmoid, ReLU, Tanh, Softmax)  
  • Feedforward Neural Networks (FNN)  
  • Training a Neural Network: Forward Propagation and Backpropagation  
  • Types of Neural Networks  
  • Perceptron: Basic neural network structure  
  • Multilayer Perceptron (MLP): Deep neural networks with multiple layers  
  • Convolutional Neural Networks (CNN): Image processing and computer vision  
  • Recurrent Neural Networks (RNN): Sequence data processing (time-series, text, speech)  
  • Long Short-Term Memory (LSTM): Advanced RNNs for handling long-term dependencies  
  • Generative Adversarial Networks (GAN): Generating new data through adversarial training  
  • Training Deep Learning Models  
  • Data Preprocessing: Normalization, Scaling, Data Augmentation  
  • Splitting Data: Training, Validation, and Test Sets  
  • Cross-Validation and Hyperparameter Tuning  
  • Model Evaluation Metrics: Accuracy, Precision, Recall, F1-Score  
  • Deep Learning Frameworks and Libraries  
  • Introduction to Popular Deep Learning Libraries: TensorFlow, Keras, PyTorch  
  • How to use these libraries for building and training models  
  • Implementing a simple neural network with Keras or TensorFlow

Accreditation and Certification

Our Specialities

Top recommended courses based on Industry demand and recent Placement statistics.

We focus on boosting candidates’ skills, confidence, and readiness for the industry.

Enhance confidence, communication, and professionalism for career success.

Improve your communication skills for better professional interactions.

We offer guidance, mock interviews, and tips for interview success.

Our students Works at

Placements we Offer

Testimonials

What our students say

Join the Best Data Analyst Course in Kochi,
Kerala and Secure Your Future